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intrinsic fluctuating interactions and random fields hidden
in glass-forming liquids
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Abstract. We propose that glass-forming liquids are intrinsically under the influences of both
fluctuating interactions and random fields well-known in the field of spin systems. This is
due to the frustration between the isotropic and anisotropic parts of effective intermolecular
interactions. Our model indicates the existence of two key temperatures relevant to the glass
transition, the density ordering pointT ∗m and the Vogel–Fulcher temperatureT0. BetweenT ∗m and
T0, a system has features similar to the ‘Griffiths phase’, while belowT0 it has those peculiar
to the ‘spin-glass phase’. This picture naturally and universally explains vitrification behaviour
from its strong to its fragile limit.

Although various features of the glass transition have been clarified recently [1–4], there
has so far been no simple physical description of the glass transition covering its strong
to its fragile limit. The theoretical approaches to this problem can be grouped into two
types: (i) one focuses on the slowing down of the dynamics on approach to a glass-
transition temperatureTg. The topological-confinement effects on molecular motion have
been expressed in terms of a few different concepts, such as free volume [5], cooperative
rearranging regions [6], and cage [7]. This stream leads to the development of the mode-
coupling theory (MCT) [7]. However, the physical meaning of assumptions hidden in
mode-coupling approximations is still not clear [8]. (ii) The other applies the knowledge of
‘spin glass’ [8–10], whose glassy behaviour is much more deeply understood than that of
structural glass, and ‘frustrated systems’ [11, 12] to the problem of glass transition. This
type of approach is attractive in the sense that it has a potential to provide us with a universal
physical picture of random frustrated systems. These two approaches are essentially different
from each other in that the former presupposes disorder, while the latter puts more emphasis
on the ordering phenomena. It should be noted that neither of the above approaches provides
us with any clear answer about what physical parameter controls the fragility of liquids [1, 2].

Before making any model of glass transition, we have to seriously consider a much more
fundamental problem, namely,why some molecules crystallize without vitrification while
others can easily form glasses without crystallization. Without considering ‘crystallization’,
we cannot understand either a supercooled state, which is defined as a metastable state
below a melting point, or vitrification phenomena, because the avoidance of crystallization
is a prerequisite to them. Approach (i) regards the glass transition as a purely dynamic
transition. Thus, it usually neglects even the fact that a glass-forming system has the ability
of crystallization. Approach (ii), on the other hand, fails to give a clear molecular-level
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explanation of the physical origin of the similarity between spin glass and structural glass,
although it recognizes the importance of topological frustration [8, 9, 10]. Thus, the wide
gap between them has not been filled yet. Hence, neither approach can clearly explain why
slow dynamics start to appear when a liquid enters into a metastable supercooled state upon
cooling, namely, when a liquid is cooled below the melting point of its crystal.

The main aim of this letter is to clarify the physical origin of frustration in glass-
forming liquids that apparently have no intrinsic quenched disorder, and to establish a
direct connection between structural glass and spin glass on the basis of molecular-level
consideration. In contrast to the common sense that densityρ is the only order parameter
required for the physical description of liquids, we propose that the introduction is necessary
of a new order parameter (bond parameter) representing a locally favoured structure in
liquids. This local bond formation causes ‘fluctuations in the intermolecular interactions’
and ‘symmetry-breaking random fields’ in much the same way as in spin systems [8, 14].
On the basis of the knowledge of spin systems [14], we propose a universal picture of
the glass transition. To our knowledge, this is the first approach to the problem of the
liquid–glass transition directly focusing on ‘crystallization (or density ordering)’.

First we focus on the effective attractive interaction potential between a molecule and
its neighbouring molecules. It is generally given by the formV (r,�) = V̄ (r)+1V (r,�),
where r is the distance from the centre of mass of the molecule and� expresses the
orientation. V̄ represents the isotropic part of the interaction and1V its anisotropic
part. This anisotropy can lead to a locally favoured structure made of a molecule and
its neighbouringn molecules, which is not consistent with the crystallographic symmetry.
Thus, there can exist competing interactions in any liquids. Even for spherical-particle
systems, it is known that an ‘icosahedral structure’ is locally favoured, which is separated
from alternative arrangements such as bcc and fcc by high potential energy barriers
(∼ n1V , n = 12). Its importance in the glass problem was widely recognized by many
researchers [9–12, 15–17]. This local bond ordering is incompatible with any long-range
order, so that it plays the role of a random disordering field against crystallization: it
favours vitrification. This competition between density and bond ordering results from two
conflicting requirements: (i) to minimize the distance between nearest-neighbour molecules;
and (ii) to maximize the number of surrounding molecules. In strong liquids, on the other
hand, the locally favoured symmetry is mainly selected by specific anisotropic interactions
between molecules [18] such as hydrogen and covalent bonding, which often lead to a
‘tetrahedral structure’. For a general physical description of real liquids, thus, we need a new
order parameterS to describe the presence of such locally preferred arrangement of liquid
molecules:ρ andS are the minimal order parameters required for the physical description of
the above complex features of many-body interactions. AlthoughS should have a tensorial
character that plays important roles in the selection of crystallographic symmetry and its
rotational dynamics, we can treat it as a scalar order parameterS when we consider the
phase behaviour. The relevance of such an approximation is well established in the field
of liquid crystals [19]. Without losing generality, therefore, the bond parameterS can be
defined as the ‘local number density of locally favoured structures’:S(r) = 6iδ(r − ri ),
whereri is the position vector of a locally favoured structure (numberi) and6i is the sum
abouti over a unit volume. Note that the spatial distribution of locally favoured structures
(ri) is random due to the nature of bond formation [20]. The spatially averaged value ofS

is given byS̄ = S0 exp(βn1V ), whereβ = 1/kBT (kB is the Boltzmann constant andT is
the temperature), since a locally favoured structure, which is stabilized byn bonds, is in a
lower energy state than the other part of the liquid byn1V . When the dependence of1V
on � is not consistent with the crystallographic symmetry,S decreases the local density,
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lowers the crystallization temperature and thus locally disturbs crystallization. Thus, each
molecule itself internally has the cause of disorder and random fields against the density
ordering. We believe that this frustration betweenρ andS is the physical factor determining
how easily molecules can form a glass without crystallization. Note that the strength of
disorder effects increases with1V , and so the stronger glass suffers from the stronger
spin-glass (SG) effects.

The above consideration leads to the following two-order-parameter description of
liquids. In contrast to the common sense that a liquid state can be described by a single
order parameter,ρ, we need a new order parameterS to express a tendency of local
bond ordering since in any liquids molecules locally favour a certain symmetry, which is
not necessarily consistent with a crystallographic symmetry favoured by density ordering.
This competition between the two order parameters,ρ andS, causes frustration, which we
believe is the major origin of vitrification. This physical picture can be naturally modelled
by a Ginzburg–Landau-type model with the couplings betweenρ and S, which represent
disorder effects ofS on the ordering ofρ. Density fluctuationsδρ in the liquid phase
indicating the instability toward the solid phase have a maximum at nonzero wavenumber
q0, whose essential feature is well characterized by the following bare static structure factor:
S0(q) = 2kBT χ0(q) = kBT /[τ + K(q − q0)

2]. The phenomenological free energy which
predicts the aboveS0(q) is given by [19]

βHρ =
∫

drdr′δρ(r)χ−1
0 (r − r′)δρ(r′)− f

3

∫
drδρ(r)3+ g

4

∫
drδρ(r)4 (1)

whereτ = a2(T − T ∗ρ ) andT ∗ρ is the temperature of the mean-field limit of stability of the
liquid phase. This Hamiltonian implies that the ‘density order parameter favours spherical
symmetry’. By including the coupling betweenδρ andS into the above standard theory of
a liquid–solid transition, we obtain the following Hamiltonian which we believe is relevant
to the glass transition:

βHGT = βHρ +
∫

dr
(
−c1δρ(r)S(r)− c2

2
δρ(r)2S(r)

)
. (2)

In the above, the coupling betweenρ andS is introduced through the coupling constants
ci . For the ‘negative’ coupling (ci < 0), the formation of active bonds (orS) leads to
a decrease of local density and also to the decrease of the ordering temperature. For the
‘positive’ coupling (ci > 0), on the other hand, the formation of active bonds (orS) leads
to an increase in local density and to an increase of the ordering temperature, so molecules
should never form a glass and just crystallize.The type (sign) of coupling betweenρ andS
gives a simple criterion on whether molecules crystallize without vitrification or can easily
form a glass.Hereafter we consider the case ofci < 0, since vitrification can occur only
for this case.

The dynamics ofδρ can be described by [10]

∂δρ(r, t)

∂t
= 00∇2 δ(βHGT )

δ(δρ(r, t))
+ ζ(r, t) (3)

whereζ is the noise term and00 is a bare kinetic coefficient. AlthoughS is not a quenched
variable, the much slower dynamics ofS than ρ guarantees the quasi-quenched nature
of S: The lifetime of locally favoured structures is longer than the characteristic time of
density fluctuations by at least a factor ofR ∼ exp(βn1V ). More importantly, recent
theoretical studies indicate that even a frustrated random system without quenched disorder
has essentially the same features as that with quenched disorder [8]. These facts allow us
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to regardS as a quenched variable as long as we consider disorder effects ofS on density
ordering. Thus, we treatS as a quenched variable hereafter.

In relation to the above, we briefly consider the stability of a metastable supercooled
state. First we defineT ∗m(0) = T ∗m and T ∗m(S̄) respectively as the density-ordering
temperature (a crystallization or melting temperature) without and with the effects of random
disorder (̄S is the disorder strength). The former is the melting temperature of a real defect-
free crystal formed as a result of density ordering, while the latter is that of a hypothetical
crystal with quenched disorder (or local bond ordering), which may not exist in reality. The
melting temperature of this hypothetical crystal with defects,T ∗m(S̄), rapidly decreases with
an increase in defect density, orS̄ (see figure 1), which is known as ‘dilution effects’ in
spin systems. For real crystallization, which requires the annealing of the random nature of
S, on the other hand, a system has to overcome a large energy barrier corresponding to the
break-up or deformation of all the active bonds in a critical nucleus of crystal, which costs
an energy of the order of1E ∼ n1V S̄vn, wherevn is the volume of a critical nucleus.
This naturally explains why a metastable supercooled state is so stable in glass-forming
liquids. Crystallization atT ∗m can thus be kinetically avoided by this extra energetic barrier
for nucleation,1E, for a sufficient cooling rate and thus vitrification can be induced, as
described below. In the metastable branch of a supercooled liquid, therefore, the random
distribution of locally favoured structures is not altered [20] by density ordering. Provided
that crystallization is kinetically prohibited, we can regard a supercooled state as the quasi-
equilibrium thermodynamic state. Thus, we consider a problem of vitrification on the basis
of this quasi-equilibrium assumption.

L i q u i d  P h a s e

G r i f f i t h - l i k e  P h a s e

G l a s s  P h a s e
( L i q u i d / S G )

v i t r i f i c a t i o n  
p a t h

T   ( S )0

T    m
*

f r a g i l e s t r o n g

T    ( S )m
*

T

S

C r y s t a l
P h a s e
w i t h
D e f e c t s

Figure 1. Schematic phase diagram of the liquid–glass transition.S̄ is a measure of disorder
strength against density ordering. SG stands for spin-glass phase. Crystallization occurs around
T ∗m if it is not kinetically avoided.

Here we point out the similarity of the above HamiltonianHGT (see equation (2))
assuming a quenched nature ofS and that of a spin system under fluctuating interactions
and random fields. The Ginzburg–Landau-type Hamiltonian under random transition
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temperaturesδτ(r), HQD, and that under random fieldsh(r), HRF , are [14]

βHQD =
∫

dr [ 1
2K(∇φ)2+ 1

2(τ − δτ(r))φ2+ 1
4gφ

4]

βHRF =
∫

dr [ 1
2K(∇φ)2+ 1

2τφ
2+ 1

4gφ
4+ h(r)φ]

whereφ(r) is the order parameter. Our HamiltonianHGT has both features ofHQD and
HRF at the same time. By settingφ(r) = δρ(r), δτ(r) = c2S(r) andh(r) = −c1S(r),HGT
can be directly correlated toHQD andHRF , after coarse graining the highq mode around
q0. Thus,the essential effects of random disorder on density ordering in our system should
be the same as those in spin systems[8, 14]. The quasi-quenched nature ofS allows us to
consider the problem in terms of complex energy landscape, without solving the dynamic
equations.

On the basis of our knowledge of a spin glass [8, 14], we draw a simple physical picture
of glass transition (see figure 1). AboveT ∗m, the system behaves just as an ordinary liquid
and the structural relaxation timeτα obeys a simple Arrhenius law,τα = τ∞α exp(1G/kBT ),
where1G is the activation energy and an increasing function of1V , and the relaxation
function 8(t) is exponential: 8(t) = 8(0) exp(−t/τα). Below T ∗m, the saddle-point
equationδHGT /δ(δρ) = 0, namely−K∇2δρ(r)+[τ−c2S(r)]δρ(r)+gδρ(r)3−c2S(r) = 0,
starts to have local minimum solutions around the high-density side of the liquid free-energy
minimum [21]. This means there exist a macroscopic number of spatial ‘islands’ having a
higher density than the liquid, belowT ∗m. This situation is similar to the spin glass where
the phase space is factorized into a hierarchy of ‘valleys’, or pure states of local minima
separated by macroscopic barriers. Thus, slow relaxations overcoming barriers separated
by different valleys are expected. This phase existing betweenT ∗m and T ∗m(S̄), which is
characterized by the existence of numerous metastable states separated by finite barriers, is
similar to the ‘Griffiths phase’ [22, 23] known in spin systems.

This ‘Griffiths-like phase’ can be characterized as follows [14, 22, 23]. In the
temperature intervalT ∗m(S̄) < T < T ∗m, 8(t) is described by the stretched exponential
[23, 24]: 8(t) = 8(0) exp[−(t/τα)βK ], instead of the usual exponential relaxation, as it
should be in the ordinary liquid phase (the paramagnetic phase in spin systems) [25]. In spin
systems [26], it is claimed that the stretched exponential parameterβK is the temperature-
dependent exponent, as it is a finite value (< 1) atT = T ∗m(S̄), and it increases monotonically
up to βK = 1 at T ∗m. This is consistent with what has been observed in structural glasses
[3, 4, 25]. Further, the strong coupling between ‘islands’ probably leads to the existence
of the SG-like phase belowTSG, in which the numerous disorder-dependent local minima
are probably separated by macroscopic (or infinite) energy barriers [14]. We assign this
phase transition atTSG, from the Griffiths-like phase to the SG-like phase, to the Vogel–
Fulcher temperatureT0, where the relaxation time diverges due to the infinite barriers and
the ergodic to non-ergodic transition takes place. However, this point is never reached in
real experiments because the large barrier heights nearT0 cause extremely slow relaxations
even aboveT0. Then, the glass-transition temperatureTg can be defined as a temperature
where the metastable ‘islands’ having sufficiently high energetic barriers do percolate. Thus,
T ∗m > Tg > T0 > T ∗m(S̄).

Figure 1 shows a phase diagram of glass transition on the basis of the above physical
picture. Here it should be noted that for the liquid–glass transition there can be two types
of the origins of disorder whose temperature dependences are crucially different from each
other: (i) anisotropic interactions that are not consistent with the crystallographic symmetry,
in molecular glass formers; and (ii) quenched disorder in structures of particle or molecules,
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e.g. the polydispersity of colloid particle sizes and the disorder in the stereoregularity,
tacticity, and chemical structures of polymers. For case (i) the strength of disorder and
random fields (̄S) is strongly dependent uponT , while for case (ii) the strength of the
disorder is independent ofT . The temperature-cooling paths drawn in figure 1 correspond
to case (i).

Here we consider the non-Arrhenius behaviour belowT ∗m in more detail. We assume
the divergence of the barrier heightEbarrier between ‘islands’ is given byEbarrier =
BT/(T − T0). This gives us the well-known Vogel–Fulcher (VF) law. Here we do not
repeat the argument deriving this relation (see e.g. [9, 10, 14, 24, 27] for details). Instead,
we stress that the effective barrier dominating the structural relaxationE

eff

barrier should be
given by (i)Eeffbarrier = 1G aboveT ∗m and (ii) Eeffbarrier = 1G + BT/(T − T0) below T ∗m.
This can be expressed analytically by the following modified VF law:

τα = τ∞α exp(1G/kBT ) exp[f (T )B/kB(T − T0)]. (4)

Heref (T ) is the Fermi-distribution-like functionf (T ) = 1/{exp[γ (T −T ∗m)]+1}, whereγ
is a positive constant that controls the sharpness of the transition atT ∗m. This modified VF
law can naturally describe the crossover from the Arrhenius to non-Arrhenius behaviour at
T ∗m and the divergence atT0. The fitting of the traditional VF law to data in a low temperature
range often produces an unrealistic attempt frequencyτ∞α (see e.g. [28]). This problem can
be removed by using equation (4). From the condition of the disappearance of the non-
Arrhenius behaviour aboveT ∗m, further, we obtain the relationB ∼ 1G(T ∗m − T0)/T

∗
m. The

fragility parameter [D] estimated by this relation with [D] = B/T0 is well correlated with
D determined experimentally, as shown in the inset of figure 2. This provides us with a
clear physical reasoning on the Angell plot [13], including the correlation between bond
strengthS and the strong nature of liquids.
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Figure 2. Relation between1G andTm−T0. The data are taken from [12]. 1:n-butyl benzene;
2: isopropyl benzene; 3: propyl carbonate; 4:n-propanol; 5:o-terphenyl; 6: salol; 7: dibutyl
phthalate, 8: s-triaphthyl benzene; 9: glycerol; 10:α-phenyl-cresol; 11: boron oxide. The
curve is to guide the eye. The inset shows the relation between [D] andD (see the text for
their definitions).

Finally, we check the other main predictions of our model: (i) there occurs a dynamic
transition from the non-cooperative (Arrhenius-type) to cooperative regime (Vogel–Fulcher-
type behaviour) atT ∗m (near Tm); (ii) the disorder strength̄S, which can be correlated
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with the activation energy1G of the α relaxation aboveT ∗m, determines the temperature
interval betweenT ∗m andT0; (iii) a stronger glass suffers from stronger disorder effects; (iv)
an increase in pressure increasesρ̄, but decreases̄S for ci < 0, simply because a locally
favoured structure having a greater volume is destroyed by applying pressure. This weakens
the random disorder effects, which makes the system more fragile. Prediction (i) is quite
natural and has already been recognized by many researchers (see e.g. [28]), although there
has so far been no physical reasoning on it. We stress that none of previous models can
explain this fact, since no models of glass transition have so far focused on crystallization
phenomena themselves. This prediction is quite specific in the sense thatT ∗m is a measurable
quantity, whileTc in MCT andT ∗ in the theory of Kivelsonet al are not. Prediction (ii), on
the other hand, can be confirmed by figure 2, which indicates the strong correlation between
1G (or 1V ) andTm− T0. Prediction (iii) is consistent with: (a) the fact that the change in
specific heat acrossTg is weaker for a stronger glass (see e.g. figure 4 of [1]); (b) the recent
finding of Sokolovet al [29] on the stronger phonon scattering in stronger liquids; (c) a
larger interval betweenTg andT0; and (d) the resulting largerβK at Tg for a stronger glass
(see e.g. [3]). Prediction (iv) is also quite consistent with the experimental findings of Cook
et al [1, 30] that strong liquids become more fragile under a high pressure. This cannot be
explained by a theory like MCT that is described by a single order parameter (density), since
a plot of viscosity versus density should be universal in such models. The relevance of our
two-order-parameter (spin-glass) model to the glass transition is strongly supported by the
validity of these predictions and also by the experimental results suggesting the similarity
between structural glass and spin glass [31].

It is worth noting here the relation between our model and the model of Kivelsonet al
[11, 12], since both focus on ‘frustration’. The most crucial difference is that we take
a crystalline state (the ordering temperatureT ∗m) as the reference state, while they take
a ‘postulated’ quasicrystal of a locally favoured structure (the ordering temperatureT ∗),
which is prohibited in a real system due to frustration. In other words, they presuppose the
avoidance of crystallization by hand. This leads to essential differences in physics, although
both temperatures are claimed to be located nearTm. The correlation ofT ∗m to Tm is quite
natural for our case, while there seems to be no such justification for their case since we
cannot expect any correlation between the hidden ordering point of a frustrated quasicrystal
and that of a real crystal, which have essentially different symmetries.

In summary, we propose a simple physical picture of glass transition on the basis of ‘the
two-order-parameter description of liquids’ [32], which connects structural glass and spin
glass in a natural way. In our view, vitrification is a result of the competition between density
ordering and hidden local bond ordering. Our study indicates that frustrated systems such as
spin glass and structural glass have the universal phase and dynamic behaviour characterized
by a complex energy landscape peculiar to ‘Griffiths-like’ and ‘spin-glass’ phases. Here it
should be noted that the fragile limit (S → 0) with c2 = 0 of the dynamic version of our
model is mathematically identical to the pioneering theory of Kirkpatrick and Thirumalai
[10], which further has dynamic features similar to MCT [7] (see the discussions in [10]).
Thus, our model may give a clue to the problem of the existence of hidden disorder in
mode-coupling equations pointed out by Bouchaudet al [8]. Finally, we stress that our
model can provide us witha universal description of the glass transition covering its strong
to fragile limit. The strong nature of liquids increases with an increase in the disorder
strength against density ordering (c1S andc2S).
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